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Studies on the total synthesis of sanglifehrin A:
stereoselective synthesis of the C(29)–C(39) fragment
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Abstract—A highly stereoselective synthesis of the C(29)–C(39) fragment of the potent immunosuppressant sanglifehrin A has been
accomplished by a sequence involving 16 steps (18% overall yield) from N-propionyloxazolidinone 9. Key steps are a diastereo-
selective hydroboration, and a diastereoselective epoxidation of an allylic alcohol followed by a 1,5-anti boron-mediated aldol reac-
tion of methyl ketone 4 with chiral aldehyde 5.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The potent immunosuppressant sanglifehrin A (SAF)
was isolated from the culture broths of Streptomyces
flaveolus in 1997 by scientists at Novartis (Fig. 1).1 Sang-
lifehrin A (1) shows a remarkably high affinity for
cyclophilin A with an IC50 = 2–4 nM.2,3 SAF has a com-
plex molecular structure, consisting of a 22-membered
macrocyclic lactone, which incorporates piperazic,
aliphatic, and aromatic amino acid fragments. One of
the remarkable features of this molecule is the presence
of a highly substituted spirobicyclic oxaazaspiro[5,5]-
undecanone system (C(33)–N(42)). This spirobicycle
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Figure 1. Sanglifehrin A (1).
contains seven stereogenic centers, six of which are con-
tiguous (C(33)–C(38)). The significant biological proper-
ties of sanglifehrin A have prompted numerous studies
directed toward its synthesis.4 Nicolaou and co-workers
described the first total synthesis of sanglifehrin A,
which was followed by the synthesis of Paquette and
co-workers.4 In addition, many research groups have
reported studies directed toward the synthesis of frag-
ments of sanglifehrin A.5

To provide material for further biological studies as well
as access to novel analogues, we initiated a study toward
the synthesis of the spirobicyclic oxaazaspiro[5,5]-
undecanone system of sanglifehrin A. We wish to
describe here our successful efforts toward the prepara-
tion of the C(29)–C(39) fragment, via a diastereoselec-
tive boron-mediated 1,5-anti aldol reaction of methyl
ketone 4 with chiral aldehyde 5 as the key step.
2. Results and discussion

Our disconnection strategy summarized in Scheme 1,
involved cleavage of the C(39)–C(40), O–C(37), and N–
C(37) bonds in 2 to give the b-hydroxy ketone 3. Further
synthetic analysis involved the cleavage of the C(31)–
C(32) bond in 3 to give methyl ketone 4 (C(32)–C(39)
fragment) and aldehyde 5 (C(29)–C(31) fragment).
Methyl ketone 4 is viewed as arising from allylic alcohol
6, available from lactone 7. Key steps in this approach
are a diastereoselective hydroboration of aldol adduct
8 to give lactone 7, selective epoxidation of allylic
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Scheme 3. Lactone opening and HWE reaction.
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Scheme 1. Retrosynthetic analysis.
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alcohol 6, and a 1,5-anti boron-mediated aldol reaction
between 4 and 5.

Our approach to the C(29)–C(39) fragment of sanglifeh-
rin A began with the asymmetric aldol addition of the
boron enolate derived from N-propionyloxazolidinone
9 with methacrolein to give the corresponding aldol
adduct 10 in 85% yield (ds >95:5) (Scheme 2).6 Silylation
of aldol 10 with TBSOTf and 2,6-lutidine gave 8 in 89%
yield. We were very pleased to find that hydroboration
of aldol 8 with 9-BBN in THF led directly to lactone 7
in 90% isolated yield and >95:05 diastereoselectivity
for the two-step sequence (hydroboration and lactoniza-
tion).7 The corresponding chiral auxiliary was easily
recovered. The relative stereochemistry for lactone 7
was determined by coupling constant analysis in its 1H
NMR spectra.7 The coupling constants for Ha/Hc

(10.4 Hz), Hc/Hd (3.7 Hz), and Hd/He (3.7 Hz) con-
firmed the stereochemistry of lactone 7. In these stereo-
chemical assignments, both the C(2)-methyl and the
C(3)-OTBS stereocenter configurations served as impor-
tant reference points.

The next step involved opening of lactone 7 with N,O-
dimethylhydroxylamine in the presence of Me2AlCl
Ha, t, J = 10.4 Hz
Hb, dd, JHb-Ha = 10.4 Hz and JHb-Hc = 5.0 Hz
Hd, t, J = 3.7 Hz
He, qd, JHe-Hd = 3.7 Hz
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Scheme 2. Synthesis of lactone 7.
leading to Weinreb amide 11 in 90% yield (Scheme 3).8

Protection of the primary OH-function in 11 as its
TBS ether gave Weinreb amide 12, which, after reduc-
tion with DIBAL-H in THF at low temperature pro-
vided aldehyde 13. The unpurified aldehyde was
directly subjected to a Horner–Waddsworth–Emmons
homologation with ketophosphonate 14 to give the
(E)-a,b-unsaturated ester 15 in 89% yield over two steps
(E:Z >95:5 diastereoselectivity).9

Ester 15 was smoothly converted to allylic alcohol 6 on
treatment with excess DIBAL-H (Scheme 4). It is note-
worthy that epoxidation of allylic alcohol 6 with
m-CPBA gave the anti-epoxy alcohol 16 in 90% overall
yield and >95:05 diastereoselectivity.10,11 Treatment of
epoxy alcohol 16 with Me2CuCNLi2 gave diol 17 in
87% yield.12 At this point, the relative stereochemistry
for 1,3-diol 17 was determined after conversion to the
PMP-acetal 18.13 Formation of p-methoxybenzylidene
acetal 18 was accomplished by treatment of the diol 17
with p-methoxybenzaldehyde dimethyl acetal and a cat-
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alytic amount of PPTS (85% yield).13 Coupling con-
stants between Ha–Hb (10.7 Hz), Hb–Hd (11.0 Hz), and
Hb–Hc (4.8 Hz) confirmed the relative stereochemistry
for 18.

Treatment of PMP-acetal 18 with DIBAL-H in CH2Cl2
at �78 �C followed by oxidation of the resulting pri-
mary alcohol 19 under standard Swern conditions gave
aldehyde 20 (89%, two steps) (Scheme 5).14 Addition of
MeLi in THF followed by Swern oxidation led to
methyl ketone 4 in 70% for the two-step sequence.14,15

At this point, aldehyde 5, corresponding to the C(29)–
C(31) fragment was prepared in three steps and 77%
overall yield from (R)-methyl-3-hydroxy-propanoate
following protection with TBSCl and imidazole, reduc-
tion of the ester to the primary alcohol with excess
DIBAL-H followed by Swern oxidation.16

With the requisite C(32)–C(39) and C(29)–C(31) frag-
ments in hand, their coupling was undertaken (Scheme
5).17 This was done by using a 1,5-anti selective boron-
mediated aldol reaction providing b-hydroxyketone 3,
corresponding to the C(29)–C(39) fragment of sanglifeh-
rin A in 81% yield and >95:05 diastereoselectivity.17–20

This aldol adduct appeared ideally suited for stereo-
chemical analysis by using the very simple method for
assigning the relative stereochemistry of b-hydroxy
ketones reported in 2002 by Roush and co-workers.20

However, we have reported a refinement of the Roush’s
model, in which we show that 1H HMR ABX pattern
analysis is not applicable to b-hydroxy ketones (e.g.,
aldols) deriving from aldehydes lacking b-branches.21

The relative stereochemistry for aldol adduct 3 was then
determined after conversion to the corresponding acetal
21 (68%, two steps) by treatment of 3 with HFÆpyr fol-
lowed by PPTS in MeOH (Scheme 6).20 Analysis of
the 1H NMR coupling constants, specifically JHa–Hc ¼
11:0 Hz, JHc–Hd

¼ 10:4 Hz, and JHd–Hf
¼ 11:3 Hz,
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Scheme 5. Boron-mediated aldol reaction of methyl ketone 4 with
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proved that Ha, Hc, Hd, and Hf are all axial in 21. This
indicates that acetal 21 derives from a 1,5-anti (Felkin)
aldol product.
3. Conclusions

This approach to the C(29)–C(39) fragment of sanglifeh-
rin A requires 16 steps and produced the desired b-
hydroxy ketone 3 in 18% overall yield. The key step in
this approach involved a 1,5-anti boron-mediated aldol
reaction of methyl ketone 4 with chiral aldehyde 5. As
a result, the route to the C(29)–C(39) fragment of sang-
lifehrin A presented here is, in principle, readily applica-
ble for the preparation of the spirolactam fragment of
sanglifehrin A as well as to additional analogues.22

Extension of this work to the synthesis of the spiro-
lactam fragment of sanglifehrin A and analogues is
underway.
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